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Nonlocal Conservation Laws and Supersymmetric 
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The role of nonlocal conservation laws and the corresponding charges are 
analyzed in the supersymmetric Heisenberg spin chain. It is observed that such 
nonlocal charges generate a graded-Yangian type algebra, by using the proper- 
ties of the monodromy matrix and classical r matrix. 

1. INTRODUCTION 

In recent years the role of nonlocal charges and conservation laws has 
been studied in detail (Bernard and Leclair, 1990) and it has been empha- 
sized that these can be used to set up a machinery very similar to quantum 
inverse scattering (Faddeev, 1989). On the other hand, previous studies 
showed that such nonlocal conserved quantities could be generated out of 
some hidden symmetry transformations of the system (Dolan, 1981; Dev- 
chand and Fairlie, 1982; Bohr and Roy Chowdhury, 1985). It has been 
demonstrated that there is a close relation between quantum group struc- 
ture and the effect of nonlocal charges on physical states (Zamoldochikov, 
1978, 1979). Perhaps the most important utilization of nonlocal charges 
was that of Zamoldochikov (1978, 1979), who showed that the exact 
S-matrix could be determined by use of such quantities. 

Here we study the nonlocal conserved quantities in the case of the 
supersymmetric Heisenberg spin chain (Makhanov and Pashaev, 1990) that 
the corresponding nonlocal charges generate a Yangian-type algebra 
(Cherednik, 1992; Le Clair and Smirnov, 1991) with gradation. The 
derivation is done through the use of the graded classical r-matrix (Se- 
menov, 1983) and the corresponding monodromy matrix. 
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2. FORMULATION 

The supersymmetric Heisenberg spin chain is governed by 

S, = [S, &]x ( l )  

where S is the superspin variable belonging to the lie algebra uspl(2/1) and 
can be represented as 

/83+84 S- C1) 
S = [  S + - S 3  + & C2 

\ C + C~- 2 S  4 

(2) 

both even (Bin) and odd (F~) set, where B m - { T , ,  T2, T3, T4} and 
F= = {T s, T6, T7, Ts}. The grading of these generators is defined by 
g(B,,,) = 0 and g(F=) = 1. Define the graded commutators 

(T  u, rv) =-- Turf  - ( - 1 ) g ( T u ) ' g ( T * ) r v T u  (4) 

Then the super-Lie algebra is defined by 

(T  u, Tt) = C~%T,, (5) 

The structure constants satisfy 

C~% = - ( - 1)*(ru )g(rv)C~. (6) 

Define the metric tensor gut by 

= (7. a ( l'lg(ToJ)(7 ~ gut --o.,. -- -. -~t  (7) 

Then one can observe that 

K =  T2 + T2 + T2 + T] + i[TsT6 - T6T5 + T7T8 - TsT71 

is a Casimir operator. 
written as 

where 

(8) 

The Lax pair pertaining to equation (1) can be 

�9 . V~ (9) 

U= i2S 

V =  i,~2S + ,~[S, &] (10) 

with S + = $1 +_ iS2, C + = S 7 "3v is8,  and C~ = $5 + iS6. Here ($1,82, 
$3, $4) are the bosonic components and ($5, $6, $7, $8) are the fermionic 
ones. The spin operator S satisfies the constraint 

S 2 = 3S - 21 (3) 

Let the generators Ti describe the lie algebra uspl(2/1) and be comprised of 
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The corresponding monodromy matrix is defined by 

T(x, y, ~) 
--- U(x, 2)T(x, y, )0 ( l l )  

Ox 

along with the condition T(x, x, ).) = l, so that the formal solution can be 
written as 

[; ] T(x, y, 2) = P exp U(z, )~) dz 

= l + ( i 2 )  f f S ( z ) d z - 2 2 f f d z s ( z ) f f s ( z ) d z +  . . .  (12) 

By virtue of the equation of motion we observe that Pl (i) = S(z) is the first 
conserved current, which is local, so we set 

f/ QO = pl(z) dz (13) 
o o  

to be the first charge. Again from equation (12), we note that 

p2(z) = S(z) .[~ S(z') dz" (13) 

is the first nonlocat current. I f  we evaluate the time derivative of P2 we get 

[ l OP2 _ 8 iS(z) - i[Sz, S] �9 S(z ')  dz (15) 
Ot 8x oo 

whence the first nonlocal charge is 

;/ O~ = p2(z) dz (16) 
r 

We now rewrite the charges in terms of super-Lie algebra generators: 

QO = & S~(x)T~ (17) 
r 

so that 

{QO, o o Qb } = C~bcQc (18) 
On the other hand, 

Q1 __ s(z) dz s(z') dz' 
O0 O0 

= dz" S, (z)sj (z) r ,  Tj = Q ~ r k 
, ) - - c o  c ~  k ~ O 

(19) 
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where 

Q~ = 1/2 dz dz'[sl (z)sl (z') + s2(z)s2(z') + s3(z)s3(z') 
C~ O0 

- -  S4(2"t)S4(Z ' )  --~ iSs(Z)S6(Z" ) - -  iS6(Z)S5(Z' )  -~ iS7Ss(Z ) - -  iS8(Z)S7(Z')]  

QI = 1/2 dz dz" sl(z)s4(z" ) +s4(z)s l (z '  ) 
oo 

+ is~ (z)s3 (z')  - is~ (z)s2 (z')  + 1/2 s5 (z)sv (z') 

i 
+ 1/2 s7 (z)s5 (z') + 2 s5 (z)s8 (z') - "~ s8 (z)s5 (z') 

i i , 
--  ~ S 6 (Z)S 7 (Z ')  "JI- -~ S 7 (Z)S 6 ( Z )  "~ 1/2 S 6 (Z)S 8 (Z ')  

+ 1/2 ss (Z)S6 (Z')  ] (20) 

with similar expressions for the other Q),  whence by explicit computation 

{QO, Q1} = CabcQ~c (21) 

On the other hand, this algebra of the nonlocal supersymmetric 
charges may be understood from the similar properties of the associated 
nonlocal transformations. Let us go back to the lax equations (9) and (10) 
and rewrite the zero-curvature condition as 

~?xAo - c3t Az = [Ao, A1] 

with 

Ao = i2S = g - l Oog 

At = i22S + 2[s, sx] = g - I  601g 
where geLie  group USPL(2/1).  Let us assume that the transformation of  
g takes the form 

6]g = -gO~(x)  (23) 

so that 

6~A,(x)  = (04, A u) - OuO~ 

The parenthesis stands for the graded commutator. In practice 

= - ~ 2 0 ~  = T(x, 2 ) T a T - ' ( x ,  2) (24) Oa(x, 2) k k 
k=O 

One may now easily verify that 

(~a,  (~b) : {(Oct, Oh) 71- 6aOb - -  (~bOa } (25)  
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This formula will be used to evaluate the repeated commutator of the 
transformation. The algebraic structure so generated is given by the relation 

(0q(2), Oh(#)) + 6,,Ob(#) -- 6bOa()O = C,bc 20c(2~ -- p0c(#) (26) 

Expanding in Laurent series, we can at once obtain 

(6o, g)o) = C,,bc6o (27a) 

(6% 6~b) = Cabc6~ (27b) 

(6% (6~, 6~)) -- (6~, (6~, 6~ = 0 (27C) 
( ( a  i I o 6~),(5c, b~)) +(-1)~((6~,  ' o ~, 6d), (6~, a~,)) = 0 (27d) 

a = g(X~)g(Xc)  + g (Xb)g (Xd)  

It is now quite evident that equations (27a) and (27b) correspond to (18) 
and (21), while the relation (27c) corresponds to 

{Q2, {Q~, Qle}} 4- {Q~, {Q~, Q0}} = 0  (28) 

3.  C L A S S I C A L  r-MATRIX 

Further properties of the nonlocal charges are deduced with the help 
of the classical r-matrix, which is closely related to the Casimir operator 
noted before. For the present case it is given by 

~1"1 { TI T2 q_ T~ T2 q_ T~ T 2 - T4, T42 .j_ T51 T62 r(2,/0 = 2 - # 

1 2 1 2 T~ T~ + T 7 T8 - -  - T8 T7} ( 2 9 )  

with T~ = Tt| 1 and T 2 = 1 | Ti; it is also equal to 

2 ( ~  ~) [Ps - e,i | %] 

Ps stands for the supersymmetric permutation operator. Now referring 
back to equation (12), we can write 

To~('Z)=P(expIi~f_~s(y)dy])ab 
=bah+ ~ 2n+l'(")'~b (30) 

n = 0  

On the other hand, we know that 

{ T(2) @ T(#) } = 2[r(2, #), T(2) | T(#)] (31) 

where ~) denotes the super Poisson bracket and | denotes the graded 
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direct product .  So equat ing similar powers  o f  2, we get 

__ [ . ~  ~,(n + .~ ~(n + m)[  ) _ L . = > . =  i )  n - I) s 

r/--I 
~ "~(-  1)= 

k=O 

n--[  1 ( n - - k - -  l)~,(m + S -- y,  t ~  "~ '0(__I) 
k = 0  

R = g(6)g(fl) + g(7)[g(~) + g(6)] 

S = g(c0[2g(7 ) + g(fl)] (32) 

This relat ion contains  as a special case the a lgebra  generated by the 
nonlocal  charges discussed above  and gives the mos t  general  c o m m u t a t i o n  
rule defining an example  o f  a graded Yangian.  

4. D I S C U S S I O N  

In the above  analysis we have shown how the nonlocal  supercharges  
close to fo rm a super -Yangian  type algebra.  These relations are noth ing  but  
a replica of  the compos i t ion  laws derived earlier for  the hidden symmet ry  
t ransformat ions .  
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